- A firm and a worker interact over 2 periods.

- Two types of worker:
 - Type h: produce 100 for firm if hired
 - Type l: produce 10 for firm

- Firm's prior is that prob of type h is $p \in (0,1)$.

 And $100p + 10(1-p) > 15$

- Worker knows the type.

- Worker and firm are both risk neutral.

 => Maximize wages and profits over the two periods.

Game is:

Period 1:

- Firm offers a contract consisting of a probability of being hired α.
 - Wage w conditional on being hired.

- Worker accept or reject.

 If reject, firm gets 0 and worker gets reservation wage $\$15$.
 If accept, then with prob α to be hired and receive w.

 With prob $(1-\alpha)$, the work is not hired and he and firm both receive 0.

Period 2:

- If worker accepted and was hired in 1st period, his productivity is now known.
 - He receives the larger of his productivity or
reservation wage, while firm receives 0
\(* h \) receives $100 and \(l \) receives $15

- If worker did not accept or not accepted, his only option
 is to get $15, firm gets 0

(a) Suppose firm makes a contract offer that both \(h \) and \(l \)
 accept, what's its best offer? What's the profit?

(b) Suppose firm makes an offer that only \(h \) accepts. Assuming
 that the firm can set any w, including a negative one, what's
 the best offer? What's profit? Should offer this or (a)?

Answer:

(a) Firm's profit if both \(h \) and \(l \) accept:
\[
d [100p + 10(1-p) - w]
\]

IR constraints:

\(h \)
\[
d [w + 100] + (1-d) \cdot 15 \geq 30 \quad 1
\]

\(l \)
\[
d [w + 15] + (1-d) \cdot 15 \geq 30 \quad 2
\]

\[
\Rightarrow \text{Max } d [100p + 10(1-p) - w]
\text{ s.t. } 1 \quad 2\]
\[2W - 15 = 0 \quad \Rightarrow \quad W = 15 \]

For firm:

\[
\begin{align*}
\text{Max} & \quad \langle 100p + 10(1-p) - \frac{15}{d} \rangle \\
\Rightarrow \quad \text{Max} & \quad 90p + 10d - 15 \\
\text{Foc} & \quad 90p + 10 > 0 \quad \Rightarrow \quad \text{profit } \uparrow \text{ as } d \uparrow \quad \Rightarrow \quad d = 1
\end{align*}
\]

Thus, contract is like \(d = 1 \), \(W = 15 \), \(\pi_a = 90p - 5 \)

(b) Now only \(h \)-type accept

Firm's profit \(p \times [100 - w] \)

\[\begin{align*}
\text{(IQ)} \\
\text{(h)} & \quad 2W + 85d - 15 > 0 \\
\Rightarrow \quad \text{must be bind} \quad \Rightarrow \quad W = \frac{15 - 85d}{d} \\
\end{align*} \]

Firm:

\[
\begin{align*}
\text{Max} & \quad p \times [100 - \frac{15 - 85d}{d}] \\
\Rightarrow \quad \text{Max} & \quad 185dp - 15p \\
\text{Foc} & \quad 185p > 0 \quad \Rightarrow \quad d \uparrow \text{ profit } \uparrow \quad \Rightarrow \quad d = 1
\end{align*}
\]

Thus \(W = -70 \), \(\pi_b = 100p - 15p + 85p = 170p \)

As \(170p > 90p - 5 \) \quad \Rightarrow \quad \text{(b) contract is better}
2. Signaling.

- $ \Theta_L$ and $ \Theta_H$, (0.5, 0.5)

<table>
<thead>
<tr>
<th></th>
<th>if $e \leq 1$</th>
<th>if $e > 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Θ_H</td>
<td>100</td>
<td>110</td>
</tr>
<tr>
<td>Θ_L</td>
<td>40</td>
<td>80</td>
</tr>
</tbody>
</table>

- Cost of education is $15 per unit for $ \Theta_H$ and $35 for $ \Theta_L$.

Find all separating and Pooling $E \Theta$ (pay productivity).

1. Separating $E \Theta$

- $e = 0$ not optimal for low-type now.

 If $e_i^* = 0$ \Rightarrow $\bar{W}_l^* = 40$, $\bar{\pi}_l^* = 40$

 $e_i' = 1$ \Rightarrow $\bar{W}_h \geq 80$, $\bar{\pi}_h \geq 45$

 \Rightarrow deviating to $e_i = 1$

 \Rightarrow $e_i^* = 1$ for this case.

For $ \Theta_H$ type

- if $e_i^* < 1$

 (IC) $100 - 15e_i^* \geq 80 - 15$ (not necessary)

 $100 - 35e_i^* \leq 80 - 35$ $\Rightarrow 35e_i^* \geq 55$

 $\Rightarrow e_i^* \geq 1$ \Rightarrow O.W. be deviate.
2. Pooling EX

1. $e^* \in (0, 1)$

$$M(\Theta_H) = \frac{1}{2} \quad \Rightarrow \quad W^* = \frac{1}{2} 100 + \frac{1}{2} 40 = 70$$

1. $\frac{70 - 35e^*}{2} \geq 40 \quad \Rightarrow \quad e^* \leq \frac{6}{7}$

$$70 - 35e^* \geq 80 - 35 \quad \Rightarrow \quad e^* \leq \frac{5}{7}$$

1. $\frac{70 - 15e^*}{2} \geq 40 \quad \Rightarrow \quad e^* \leq 2$

$$70 - 15e^* \geq 80 - 15 \quad \Rightarrow \quad e^* \leq \frac{1}{3}$$

Also, $e^* = 0$ can hold =) $e^* \in [0, \frac{1}{3}]$. Pooling Θ_H exist if $M(\Theta_H) = \begin{cases} 1 \quad \text{if } e^* \geq e^* \\ 0 \quad \text{otherwise} \end{cases}$
\(e^x = 1 \)

let belief be \(u(\theta) = \begin{cases} \frac{1}{2} & \text{if } e^x \leq \theta \\ 0 & \text{otherwise} \end{cases} \)

\[w^* = \frac{1}{2} \times 110 + \frac{1}{2} \times 80 = 95 \]

(i) \(95 - 35 \geq 40 - 0 \) \(\Rightarrow \) Both hold

(ii) \(95 - 15 \geq 40 - 0 \)

\(e^x > 1 \)

let belief be \(u(\theta) = \begin{cases} \frac{1}{2} & \text{if } e^x > \theta \\ 0 & \text{otherwise} \end{cases} \)

\[w^* = 95 \]

(i) \(95 - 35e^x \geq 40 \) \(\Rightarrow \) \(e^x \leq \frac{11}{7} \)

\(95 - 35e^x \geq 80 - 35 \) \(\Rightarrow \) \(e^x \leq \frac{10}{7} \)

(ii) \(95 - 15e^x \geq 40 \) \(\Rightarrow \) \(e^x \leq \frac{11}{3} \)

\(95 - 15e^x \geq 80 - 15 \) \(\Rightarrow \) \(e^x \leq 2 \)

\(\Rightarrow e^x \in [1, \frac{12}{7}] \) can be pooling EAX